Section 2.2 Derivatives of Products and Quotients (Minimum Homework: all odds)

We will learn two new rules to find derivatives in section 2.2.
The Product Rule - which is used when finding a derivative of problem with multiplication of two factors, both of which contain a variable.

The Quotient Rule - which is used when finding the derivative of a fraction that has a variable in the denominator.

Here are the rules and a short description of the symbols:

The Product Rule:

If f and g are both differentiable functions, then:

$$
\frac{d}{d x}(f(x) * g(x))=f(x) * \frac{d}{d x} g(x)+g(x) * \frac{d}{d x} f(x)
$$

Product Rule (derivative equals)

(first factor)(derivative of second factor) + second factor (derivative of first factor)
The Quotient Rule
If f and g are both differentiable functions, then:

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) * \frac{d}{d x} f(x)-f(x) * \frac{d}{d x} g(x)}{(g(x))^{2}}
$$

> Quotient Rule (derivative equals)
denominator(derivative of numerator) - numerator(derivative of denominator)
(denominator) ${ }^{2}$

Example: Find the derivative using the Product rule.
$f(x)=(5 x+6)\left(x^{2}-3 x\right)$
First: Determine the two factors. (parentheses are not required)
First factor: $5 x+6$ Second Factor: $x^{2}-3 x$

Place them in the top row of a table:

First factor $5 x+6$	Second Factor $x^{2}-3 x$

Second: find the derivative of each factor and put the derivative in the second row.

First factor $5 x+6$	Second Factor $x^{2}-3 x$
Derivative 5	Derivative $2 x-3$

Third: Cross multiply top down and bottom up.

First factor $5 x+6$	Second Factor $x^{2}-3 x$
Derivative 5	Derivative $2 x-3$
cross multiply top down	cross multiply bottom up
$(5 x+6)(2 x-3)$	$5\left(x^{2}-3 x\right)$

Fourth: Add the expressions in the bottom row to find the derivative.
$f^{\prime}(x)=(5 x+6)(2 x-3)+5\left(x^{2}-3 x\right)$

Fifth: Simplify
$f^{\prime}(x)=10 x^{2}-15 x+12 x-18+5 x^{2}-15 x$

Answer: $f^{\prime}(x)=15 x^{2}-18 x-18$ or $3\left(5 x^{2}-6 x-6\right)$

Example: Find the derivative using the Quotient rule.
$f(x)=\frac{3 x}{2 x+5}$

First: Create a table. Put the denominator in the top left position, the numerator in the top right position.

Denominator $2 x+5$	Numerator 3x

Second: Find the derivative of each and put the result in the second row.

Denominator $2 x+5$	Numerator 3x
Derivative 2	Derivative 3

Third: Cross multiply top down and bottom up.

Denominator $2 x+5$	Numerator $3 x$
Derivative 2	Derivative 3
cross multiply top down	cross multiply bottom up
$(2 x+5) 3=6 x+15$	$2(3 x)=6 x$

Fourth: create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator.
$f^{\prime}(x)=\frac{6 x+15-6 x}{(2 x+5)^{2}}$

Fifth: Simplify
$f^{\prime}(x)=\frac{15}{(2 x+5)^{2}}$
Answer: $f^{\prime}(x)=\frac{15}{(2 x+5)^{2}}$

Example: $f(x)=(5 x+6)\left(x^{2}-3 x\right) ; x=2$
a) Find the slope of the tangent line to the graph of the function for the given value of x.
b) Find the equation of the tangent line to the graph of the function for the given value of x.
a) Slopes of tangent lines can be found by substituting $x=2$ into the derivative.
$f^{\prime}(x)=15 x^{2}-18 x-18$ (from previous example)
$m=f^{\prime}(2)=15(2)^{2}-18(2)-18=6$
Answer $m=6$
b) Need to find y-coordinate of the point.
$y=f(2)-(5(2)+6)\left((2)^{2}-3(2)\right)=-32$
point $(2,-32)$ slope $m=6$
Equation of line

$$
\begin{aligned}
& y-(-32)=6(x-2) \\
& y+32=6 x-12 \\
& \text { Answer: } y=6 x-44
\end{aligned}
$$

\#1-12: Use the product rule to find the derivatives of the following.

1) $y=(2 x+3)(3 x-4)$
2) $y=(3 x-4)(5 x-8)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

Answer: $y^{\prime}=30 x-44$
3) $f(x)=(x-2)(3 x-4)$
4) $y=(x-5)\left(3 x^{2}+7\right)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: $\frac{d y}{d x}=9 x^{2}-30 x+7$
5) $f(x)=\left(x^{2}+3 x+2\right)(3 x-5)$
6) $f(x)=\left(3 x^{2}+6 x-2\right)(4 x+1)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: $f^{\prime}(x)=36 x^{2}+54 x-2$

$$
\text { 7) } g(t)=(2 t-1)(3 t+5)
$$

8) $g(t)=\left(3 t^{2}+5 t\right)(2 t+1)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: $g^{\prime}(t)=18 t^{2}+26 t+5$
9) $y=3 x^{2}\left(2 x^{2}+6 x-4\right)$
10) $y=4 x^{3}\left(3 x^{2}+7 x-5\right)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: $y^{\prime}=4 x^{2}\left(15 x^{2}+28 x-15\right)$
11) $y=\left(3 x^{4}\right)\left(5 x^{2}+7\right)$
12) $y=\left(2 x^{5}\right)(5 x-8)$

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: $y^{\prime}=60 x^{5}-80 x^{4}=20 x^{4}(3 x-4)$
\#13-20: Use the quotient rule to find the derivative of the following.
13) $f(x)=\frac{6}{5 x+1}$
14) $g(x)=\frac{4}{3 x+11}$

Denominator	Numerator
Derivative	Derivative
cross multiply top down	cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator
answer: $g^{\prime}(x)=\frac{-12}{(3 x+11)^{2}}$
15) $y=\frac{9 x}{x-5}$
16) $y=\frac{12 x}{5 x-6}$

Denominator	Numerator
Derivative	Derivative
cross multiply top down	cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator
answer: $y^{\prime}=\frac{-72}{(5 x-6)^{2}}$
17) $y=\frac{3 t+1}{2 t+5}$
18) $y=\frac{2 t+3}{4 t+5}$

Denominator	Numerator
Derivative Type equation here.	Derivative
cross multiply top down	cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator
answer: $\frac{d y}{d x}=\frac{-2}{(4 t+5)^{2}}$
19) $g(x)=\frac{x^{2}}{x-4}$
20) $g(x)=\frac{x^{2}}{x-2}$

Denominator	Numerator
Derivative 2	Derivative
cross multiply top down	cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator
answer: $g^{\prime}(x)=\frac{x(x-4)}{(x-2)^{2}}$
\#21-26:
a) Find the slope of the tangent line to the graph of the function for the given value of x (or t).
b) Find the equation of the tangent line to the graph of the function for the given value of x (or t).
21) $y=(2 x+3)(3 x-4) ; x=2$
22) $y=(3 x-4)(5 x-8) ; x=3$
(derivative computed in \#1 / 2)

22a) $m=46$
22b) $y=46 x-103$
\#21-26:
a) Find the slope of the tangent line to the graph of the function for the given value of x (or t).
b) Find the equation of the tangent line to the graph of the function for the given value of $x(o r t)$.
23) $g(t)=(2 t-1)(3 t+5) ; t=4$
24) $g(t)=\left(3 t^{2}+5 t\right)(2 t+1) ; t=-2$
(derivative computed in $7 / 8$)
answer $24 a$) $m=25 \quad 24 b) y=25 t+44$
\#21-26:
a) Find the slope of the tangent line to the graph of the function for the given value of x (or t).
b) Find the equation of the tangent line to the graph of the function for the given value of $x(o r t)$.
25) $f(x)=\frac{6}{5 x+1}$; $x=1$
26) $g(x)=\frac{4}{3 x+11} ; x=-3$
(derivative computed in 13 / 14)
answer 26a) $m=-3$ 26b) $y=-3 x-7$

